

Name

Class



www.MathsTeacherHub.com

# Sequences

(9 – 1) Topic booklet

## Higher

These questions have been collated from previous years GCSE Mathematics papers.

**You must have:** Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser.

Total Marks

### Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
  - *there may be more space than you need.*
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must **show all your working out**.
- If the question is a **1H** question you are not allowed to use a calculator.
- If the question is a **2H** or a **3H** question, you may use a calculator to help you answer.

### Information

- The marks for **each** question are shown in brackets
  - *use this as a guide as to how much time to spend on each question.*

### Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

**Answer ALL questions**  
**Write your answers in the space provided.**  
**You must write down all the stages in your working.**

**1** Here are the first four terms of an arithmetic sequence.

1      5      9      13

Find an expression, in terms of  $n$ , for the  $n$ th term of this sequence.

.....  
**(Total for Question 1 is 2 marks)**

May 2024 – Paper 1H

**1** The first five terms of an arithmetic sequence are

1      4      7      10      13

Write down an expression, in terms of  $n$ , for the  $n$ th term of this sequence.

.....  
**(Total for Question 1 is 2 marks)**

November 2020 – Paper 1H

3 Here are the first five terms of an arithmetic sequence.



7            13            19            25            31

(a) Find an expression, in terms of  $n$ , for the  $n$ th term of this sequence.

.....  
(2)

The  $n$ th term of a different sequence is  $8 - 6n$

(b) Is  $-58$  a term of this sequence?

You must show how you get your answer.

.....  
(2)

3 Here are the first four terms of an arithmetic sequence.

6      10      14      18



(a) Write an expression, in terms of  $n$ , for the  $n$ th term of this sequence.

.....  
(2)

The  $n$ th term of a different arithmetic sequence is  $3n + 5$

(b) Is 108 a term of this sequence?

Show how you get your answer.

.....  
(2)

3 Here are the first six terms of a Fibonacci sequence.

1      1      2      3      5      8



The rule to continue a Fibonacci sequence is,

the next term in the sequence is the sum of the two previous terms.

(a) Find the 9th term of this sequence.

.....  
(1)

The first three terms of a different Fibonacci sequence are

$a$        $b$        $a + b$

(b) Show that the 6th term of this sequence is  $3a + 5b$

.....  
(2)

Given that the 3rd term is 7 and the 6th term is 29,

(c) find the value of  $a$  and the value of  $b$ .

.....  
(3)

6 The  $n$ th term of a sequence is  $2n^2 - 1$



The  $n$ th term of a different sequence is  $40 - n^2$

Show that there is only one number that is in both of these sequences.

13 An expression for the  $n$ th term of the sequence of triangular numbers is  $\frac{n(n+1)}{2}$



Prove that the sum of any two consecutive triangular numbers is a square number.

June 2023 – Paper 3H

**(Total for Question 13 is 3 marks)**

14 Here are the first six terms of a quadratic sequence.

5

11

21

35

53

75



Find an expression, in terms of  $n$ , for the  $n$ th term of this sequence.

November 2023 – Paper 3H

**(Total for Question 14 is 2 marks)**

**15** Here are the first four terms of a quadratic sequence.

3      9      17      27



Find an expression, in terms of  $n$ , for the  $n$ th term of this sequence.

**16** Here are the first five terms of a quadratic sequence.

10      21      38      61      90



Find an expression, in terms of  $n$ , for the  $n$ th term of this sequence.

**16** Here are the first six terms of a quadratic sequence.

–1      5      15      29      47      69



Find an expression, in terms of  $n$ , for the  $n$ th term of this sequence.

16 The  $n$ th term of a sequence is given by  $an^2 + bn$  where  $a$  and  $b$  are integers.



The 2nd term of the sequence is  $-2$

The 4th term of the sequence is  $12$

(a) Find the 6th term of the sequence.

---

(4)

Here are the first five terms of a different quadratic sequence.

0      2      6      12      20

(b) Find an expression, in terms of  $n$ , for the  $n$ th term of this sequence.

---

(2)

17 Here are the first 5 terms of a quadratic sequence.

1

3

7

13

21



Find an expression, in terms of  $n$ , for the  $n$ th term of this quadratic sequence.

**20**  $x - 4$ ,  $x + 2$  and  $3x + 1$  are three consecutive terms of an arithmetic sequence.

(a) Find the value of  $x$ .



$$x = \dots \quad (2)$$

$y - 4$ ,  $y + 2$  and  $3y + 1$  are three consecutive terms of a geometric sequence.

(b) Find the possible values of  $y$ .

$$\dots \quad (5)$$

**20** Here are the first five terms of a sequence.

-1            0            3            8            15



Find an expression, in terms of  $n$ , for the  $n$ th term of this sequence.

22 The 2nd term of a geometric sequence is  $3 + 2\sqrt{2}$

The 3rd term of the sequence is  $13 + 9\sqrt{2}$

Find the value of the common ratio of the sequence.

Give your answer in the form  $a + \sqrt{b}$  where  $a$  and  $b$  are integers.

You must show all your working.

22 Here are the first five terms of a sequence.

4      11      22      37      56



Find an expression, in terms of  $n$ , for the  $n$ th term of this sequence.

23 Here are the first five terms of a geometric sequence.

$$\sqrt{5} \quad 10 \quad 20\sqrt{5} \quad 200 \quad 400\sqrt{5}$$

(a) Work out the next term of the sequence.

..... (2)

The 4th term of a different geometric sequence is  $\frac{5\sqrt{2}}{4}$

The 6th term of this sequence is  $\frac{5\sqrt{2}}{8}$

Given that the terms of this sequence are all positive,

(b) work out the first term of this sequence.

You must show all your working.

..... (3)

23 S is a geometric sequence.

(a) Given that  $(\sqrt{x} - 1)$ , 1 and  $(\sqrt{x} + 1)$  are the first three terms of S, find the value of  $x$ .  
You must show all your working.



.....  
(3)

(b) Show that the 5th term of S is  $7 + 5\sqrt{2}$

.....  
(2)